Abstract

Device identification using challenge-response pairs (CRPs), in which the response is obtained from a physically unclonable function (PUF), is a promising countermeasure for the counterfeit of integrated circuits (ICs). To achieve secure device identification, a large number of CRPs are collected by the manufacturers, thereby increasing the measurement costs. This paper proposes a novel scheme, which employs a logic built-in self-test (LBIST) circuit, to efficiently collect the CRPs during production tests. As a result, no additional measurement is required for the CRP collection. In addition, the proposed technique can counter machine-learning (ML) attacks because of the complicated relationship between challenge and response through the LBIST circuit. Through the proof-of-concept implementation, in which a field-programmable gate array (FPGA) is used, we demonstrate the PUF performance can be evaluated by a test pattern generated by the LBIST circuit. Furthermore, the vulnerability due to ML attacks using a support vector machine (SVM) and random forest (RF) is lowered by more than two times compared to the naive usage of PUF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.