Abstract

We present an automatic method for the synthesis of processes in a reactive system from specifications in linear-time temporal logic (LTL). The synthesis algorithm executes a loop consisting of three phases: Solve, Check, and Refine. In the Solve phase, a candidate solution is obtained as a model of a Boolean constraint system; in the Check phase, the candidate solution is checked for reachable error states; in the Refine phase, the constraint system is refined to eliminate any errors found in the Check phase. The algorithm terminates when an implementation without errors is found. We call our approach lazy, because constraints on possible process implementations are only considered incrementally, as needed to rule out incorrect candidate solutions. This contrasts with the standard approach, where the full specification is considered right away. We report on experience in the arbiter synthesis for the AMBA bus protocol, where lazy synthesis leads to significantly smaller implementations than the previous eager approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.