Abstract

As dynamic random access memories (DRAMs) are becoming denser with technology scaling, more complex fault behaviors emerge; examples are leakage, coupling effects, and cell neighborhoods interaction. The neighborhood pattern sensitive fault (NPSF) model is suitable to address such faulty behaviors and identify them during the characterization and/or test of new DRAM chips. However, NPSF test algorithms are extremely time-consuming and therefore not economically affordable. In this brief, we show how layout information can be used to refine and significantly simplify the NPSF model and reduce the test time complexity. As a case study, the folded DRAM array is considered. A realistic NPSF model, the $\Delta$ -type neighborhood, is introduced together with a time efficient test algorithm which is more than two-times cheaper than traditional ones. Even when incorporating bit-line influence and word-line coupling effects, along with NPSFs, the test algorithm time complexity almost remains unaltered. Therefore, the proposed approach makes NPSF testing economically affordable, and hence, suitable for the characterization/test of dense DRAMs in the nanoera.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.