Abstract

The physical layering of sol-gel-derived lead zirconate titanate (PZT) 52/48 and lanthanum-doped PZT (PLZT) 2/52/48 on platinized silicon substrates was investigated to determine if the ferroelectric properties and fatigue resistance could be influenced by different layering sequences. Monolithic thin films of PZT and PLZT were characterized to determine their ferroelectric properties. Sandwich structures of Pt/PZT/PLZT/PLZT/PZT/Au and Pt/PLZT/PZT/PZT/PLZT/Au and alternating structures of Pt/PZT/PLZT/PZT/PLZT/Au and Pt/PLZT/PZT/PLZT/PZT/Au were then fabricated and characterized. X-ray photoelectron spectroscopy depth profiles revealed that the layering sequence remained intact up to 700 °C for 45 min. It was found that the end layers in the multilayered films had a significant influence on the resulting hysteresis behavior and fatigue resistance. A direct correlation of ferroelectric properties and fatigue resistance can be made between the data obtained from the sandwiched structures and their end-layer monolithic thin film counterparts. Alternating structures also showed an improvement in the fatigue resistance while the polarization values remained between those for PZT and PLZT thin films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.