Abstract

Layer-by-layer (LBL) BioAssembly method was developed to enhance the control of cell distribution within 3D scaffolds for tissue engineering applications. The objective of this study was to evaluate in vivo the development of blood vessels within LBL bioassembled membranes seeded with human primary cells, and to compare it to cellularized massive scaffolds. Poly(lactic) acid (PLA) membranes fabricated by fused deposition modeling were seeded with monocultures of human bone marrow stromal cells or with cocultures of these cells and endothelial progenitor cells. Then, four cellularized membranes were assembled in LBL constructs. Early osteoblastic and endothelial cell differentiation markers, alkaline phosphatase, and von Willebrand's factor, were expressed in all layers of assemblies in homogenous manner. The same kind of LBL assemblies as well as cellularized massive scaffolds was implanted subcutaneously in mice. Human cells were observed in all scaffolds seeded with cells, but not in the inner parts of massive scaffolds. There were significantly more blood vessels observed in LBL bioassemblies seeded with cocultures compared to all other samples. LBL bioassembly of PLA membranes seeded with a coculture of human cells is an efficient method to obtain homogenous cell distribution and blood vessel formation within the entire volume of a 3D composite scaffold.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.