Abstract
Abstract Hall effects have been the central paradigms in modern physics, materials science and practical applications, and have led to many exciting breakthroughs, including the discovery of topological Chern invariants and the revolution of metrological resistance standard. To date, the Hall effects have mainly focused on a single degree of freedom (DoF), and most of them require the breaking of spatial-inversion and/or time-reversal symmetries. Here we demonstrate a new type of Hall effect, i.e., layer-valley Hall effect, based on a combined layer-valley DoF characterized by the product of layer and valley indices. The layer-valley Hall effect has a quantum origin arising from the layer-valley contrasting Berry curvature, and can occur in nonmagnetic centrosymmetric crystals with both spatial-inversion and time-reversal symmetries, transcending the symmetry constraints of single DoF Hall effect based on the constituent layer or valley index. Moreover, the layer-valley Hall effect is highly tunable and shows a W-shaped pattern in response to the out-of-plane electric fields. Additionally, we discuss the potential detection approaches and material-specific design principles of layer-valley Hall effect. Our results demonstrate novel Hall physics and open up exotic paradigms for new research direction of layer-valleytronics that exploits the quantum nature of the coupled layer-valley DoF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.