Abstract
Novel cubic microstructures for the purposes of plasmonic Ag-based NPs were made using biological wastes produced from a microbial culture of Bacillus cereus (B. cereus) employing a bottom-up approach for the biosynthesis of metal-based nanomaterials. The unique surface plasmon resonance (SPR) of the as-prepared Ag-based NPs was detected at 405 nm. The infra-red spectrum revealed that the used biological waste effectively stabilized our Ag-based NPs. Scanning and transmission electron microscopes were used in order to evaluate the sizes and shapes of the distinctive structures present in our samples. The Ag NPs had a face-centered cubic structure, with a size of 64.4 nm for the (200) nano-crystallites, according to the X-ray diffraction that was conducted. The zeta potential was found to be −19.5 mV and the dynamic light scattering (DLS) size was 238.8 nm. Methylene blue’s (MB) reaction with NaBH4 was used in order to measure the catalytic activity of the generated Ag-based NPs over a period of 1 to 5 min. With an astonishing reaction rate of 0.2861 min−1, the MB elimination percentage reached 67% in just 5 min, displaying outstanding catalytic activity. This work can therefore encourage the use of this biowaste for the ecologically benign, cost-effective, and long-term synthesis of innovative Ag-based nanoparticles and nanostructures, as well as in their use as catalysts in the catalytic reduction in MB.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.