Abstract
Coronary artery disease is the leading cause of death around the world. Endovascular stenting is the preferred treatment option to restore blood flow in the coronary arteries due to the lower perioperative morbidity when compared with more invasive treatment options. However, stent failure is still a major clinical problem, and further technological solutions are required to improve the performance of current stents. Here, we developed coronary stents covered with elastin-like recombinamers (ELRs) by exploiting a layer-by-layer technique combined with catalyst-free click chemistry. The resulting ELR-covered stents were intact after an in vitro simulated implantation procedure by balloon dilatation, which evidenced the elastic performance of the membrane. Additionally, the stents were mechanically stable under high flow conditions, which is in agreement with the covalent and stable nature of the click chemistry crosslinking strategy exploited during the ELR-membrane manufacturing and the successful embedding of the stent. Minimal platelet adhesion was detected after blood exposure in a Chandler loop as shown by scanning electron microscopy. The seeding of human endothelial progenitor cells (EPCs) on the ELR-membranes resulted in a confluent endothelial layer. These results prove the potential of this strategy to develop an advanced generation of coronary stents, with a stable and bioactive elastin-like membrane to exclude the atherosclerotic plaque from the blood stream or to seal coronary perforations and aneurysms, while providing a luminal surface with minimal platelet adhesion and favouring endothelialization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.