Abstract

The problem with permanent magnetic materials of very high anisotropic fields is that it is still difficult to determine the intrinsic magnetic properties, when measured using a magnetometer which has a limited magnetic field. The Law of Approach to Saturation (LAS) mathematical model provides a way to measure permanent magnets, with high anisotropic fields by correcting the magnetization data of the first quadrant curve or the virgin curve of the minor hysteresis loop. In this research, a computational LAS program was conducted to compute the intrinsic magnetic properties of magnetic materials, such as saturation magnetization, anisotropy field and magnetocrystalline anisotropy constant. Magnetization data were obtained from permagraph measurements of barium hexaferrite (BaFe12O19), strontium hexaferrite (SrFe12O19) and microwave absorbers BaFe12-xMnx/2Tix/2O19 and SrFe12-xMnx/2Tix/2O19. The convergences of magnetization were assessed to determine the effect of substitution on barium hexaferrite and strontium hexaferrite materials on saturation magnetization values, anisotropy constants and anisotropic fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.