Abstract

For a fixed we say that a point (r, s) in the integer lattice is b-visible from the origin if it lies on the graph of a power function f(x) = axb with and no other integer lattice point lies on this curve (i.e., line of sight) between (0, 0) and (r, s). We prove that the proportion of b-visible integer lattice points is given by 1/ζ(b + 1), where ζ(s) denotes the Riemann zeta function. We also show that even though the proportion of b-visible lattice points approaches 1 as b approaches infinity, there exist arbitrarily large rectangular arrays of b-invisible lattice points for any fixed b. This work specialized to b = 1 recovers original results from the classical lattice point visibility setting where the lines of sight are given by linear functions with rational slope through the origin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.