Abstract

A spatio-temporal process in the Lattice Lotka Volterra (LLV) model, when realized on low dimensional support, is studied. It is shown that the introduction of a long-range mixing causes a drastic change in the system’s behavior, which transits from small random-like fluctuations to global oscillations when the mixing rate transcends above a critical point. The amplitude of the induced oscillations is well defined by the mixing rate and is insensitive to the initial conditions and the lattice size variations. The observed behavior essentially differs from that predicted by the Mean-Field model which is conservative. The oscillations are of limit-cycle type and appear as a stochastic analog of a Hopf bifurcation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.