Abstract

The phonon dispersion relations and the phonon frequency distribution function of fct indium have been deduced, for the first time, using a lattice dynamical model which expresses the atomic interactions in terms of central, angular, and volume forces. Six elastic constants, four zone boundary frequencies, and an equilibrium condition were used in the evaluation of the force constants. It is shown that this model is elastically consistent and conforms with the translational symmetry of the lattice; the phonon frequencies of indium deduced from it are in very good agreement with the experimental values of Reichardt and Smith and the theoretical values of Garrett and Swihart, but disagree with the theoretical values of Chulkov et al. as well as those of Gunton and Saunders at several wave vectors and polarizations. In addition the phonon frequency distribution curve obtained from this model is in overall agreement with those obtained from the electron tunnelling data, the inelastic scattering of neutrons as well as a pseudopotential model. The apparent characteristic features of these curves, the implications of the crystallographic equivalence between fct and bet lattices, and their relevance in the lattice dynamical study of indium are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.