Abstract

We study the deformation and dynamics of droplets in time-dependent flows using 3D numerical simulations of two immiscible fluids based on the lattice Boltzmann model (LBM). Analytical models are available in the literature, which assume the droplet shape to be an ellipsoid at all times (P.L. Maffettone, M. Minale, J. Non-Newton. Fluid Mech 78, 227 (1998); M. Minale, Rheol. Acta 47, 667 (2008)). Beyond the practical importance of using a mesoscale simulation to assess "ab initio" the robustness and limitations of such theoretical models, our simulations are also key to discuss --in controlled situations-- some relevant phenomenology related to the interplay between the flow time scales and the droplet time scales regarding the "transparency" transition for high enough shear frequencies for an external oscillating flow. This work may be regarded as a step forward to discuss extensions towards a novel DNS approach, describing the mesoscale physics of small droplets subjected to a generic hydrodynamical strain field, possibly mimicking the effect of a realistic turbulent flow on dilute droplet suspensions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.