Abstract

The two-dimensional natural convection and entropy generation within a hollow heat exchanger are investigated. The heat exchanger is filled with CuO-water nanofluid which its dynamic viscosity is estimated by KKL model. In addition, the influence of shapes of nanoparticles on the heat transfer rate is considered in the simulation, and the most efficient shape of nanoparticle is selected to be used in the further investigation. The entropy generation analysis and heatline visualization are employed to present a comprehensive study on the considered heat exchanger. The Rayleigh number in range of 103 to 106, nanoparticle concentrations in the pure water (0, 0.01, 0.02, 0.03 and 0.04 vol%) and four different thermal arrangements of internal active pipes are the governing parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.