Abstract
A number of experimental approaches have indicated differential interneuronal connectivity following differential experience during both development and adulthood. In Golgi preparations, prolonged maze training was reported to alter dendritic branching of distal apical dendrites of Layer IV and V pyramidal neurons in adult rat occipital cortex. To determine the specificity of this effect to direct involvement in the visual aspects of training, the effects of monocular maze training, using a split-brain procedure and opaque contact occluders, was examined in the present study. Rats were maze trained with unilateral or alternating monocular occlusion, while non-trained rats with unilateral or alternating monocular occlusion were handled briefly and given water reward. There was no within-animal effect of fixed occluder position in non-trained controls. In unilaterally-occluded trained rats, Layer V pyramidal neurons in occipital cortex opposite the open eye had greater oblique dendritic length in the distal region of the apical dendrite than did those opposite the occluded eye. Similarly, rats trained with alternating occlusion had greater distal apical oblique dendritic length in Layer V occipital pyramidal neurons than did non-trained controls. This indicates that morphological sequelae of training are concentrated in areas processing information associated with visual aspects of the training and renders unlikely general metabolic or hormonal causation of such effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.