Abstract
When platelet-derived growth factor (PDGF) binds to its receptors a number of biochemical reactions are elicited in the cell. Several models have been presented for the effects of ligand-induced receptor conformation and aggregation on signal transduction but little is known about the direct effects on receptor diffusion. This study concerns the lateral mobility of PDGF receptors in fibroblasts. It was assessed with fluorescence recovery after photobleaching (FRAP), using rhodaminated receptor antibodies or Fab-fragments of the antibody as ligands. The aims of the investigation were: (a) to compare the lateral mobility of membrane receptors of human fibroblasts labelled with either antibodies against the PDGF receptor or Fab-fragments of the same antibodies, and (b) to study the effects of serum or PDGF on the mobility of the receptors. Human foreskin fibroblasts (AG 1523) were grown on coverslips either under standard or under serum-free conditions yielding "normal" and "starved" cells, respectively. Two parameters of the diffusion were evaluated; the diffusion coefficient (D) and the mobile fraction (R) of the receptors. We found that normal fibroblasts had a smaller diffusion coefficient and a lower mobile fraction compared to starved cells using antibodies for receptor labelling. The addition of PDGF, just before the measurement, increased the D and R for normal cells, while starved cells, showing higher initial values, displayed slightly reduced values of D and R. After the addition of serum, D increased and R remained low for normal cells, whereas for starved cells both D and R increased to upper limits of 11.0 x 10(-10) cm2s-1 and greater than 90% respectively. In general, the D and R values, both in normal and starved cells, were higher for cells labelled with Fab-fragments than for antibody-labelled cells. The results are discussed in relation to the natural complexity of the receptor, and how PDGF, serum, antibodies and Fab-fragments might interfere with receptor structure, aggregation state and membrane diffusion characteristics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.