Abstract
As a self-contained source-reservoir petroleum system, shale gas plays have different generation mechanisms from conventional natural gas plays, especially with respect to the effects of residual hydrocarbons on shale gas generation. In this study, closed-system pyrolysis experiments were conducted on a suite of residual shales obtained by the semi-closed pyrolysis of shales from the Neoproterozoic Xiamaling Formation under various conditions. The effects of oil expulsion on the geochemical characteristics of residual organic matter (both bitumen and kerogen) in shale and on shale gas generation in the high maturity stage were investigated. The results indicated that shales with high oil expulsion efficiencies should be depleted in the aliphatic fractions in residual shale. In contrast, most of the aliphatic fractions should remain in shales with low oil expulsion efficiencies. Additionally, oil expulsion can further affect the chemical and isotopic compositions of the gas generated at later stages of thermal maturation. With increasing oil expulsion efficiency, C1, C2, C3, C1–5, and C2–5 gas yields and gas wetness decrease, while C1, C2, and C3 carbon isotopic values become heavier.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.