Abstract

Empirical networks are often globally sparse, with a small average number of connections per node, when compared to the total size of the network. However, this sparsity tends not to be homogeneous, and networks can also be locally dense, for example, with a few nodes connecting to a large fraction of the rest of the network, or with small groups of nodes with a large probability of connections between them. Here we show how latent Poisson models that generate hidden multigraphs can be effective at capturing this density heterogeneity, while being more tractable mathematically than some of the alternatives that model simple graphs directly. We show how these latent multigraphs can be reconstructed from data on simple graphs, and how this allows us to disentangle disassortative degree-degree correlations from the constraints of imposed degree sequences, and to improve the identification of community structure in empirically relevant scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.