Abstract
A long-running need in carbon fiber composite production is to ameliorate interfacial adhesion between the polymer and carbon fibers. Here, we present a convenient and feasible strategy for controlling the carbon fiber’s surface in a continuous process: syntheses of click-modified silanes via copper(I)-catalyzed azide–alkyne cycloaddition reaction and grafting them onto fiber surfaces which prepare a latent curable platform under mild processes without postmodification. As 1,2,3-triazole moieties from the click reaction were added to the epoxy/dicyandiamide system, they triggered additional reactions in the later conversion stage; approximately, a 20% increase in the total reaction enthalpy compared to the system with no additives was obtained. We expected the enhanced cross-linking between the surface and matrix to expand the interfacial area, leading to reinforcements on interfacial adhesion and stress-transfer abilities within composites. The merit of the approach is well-demonstrated by conductive atomic force microscopy, showing that the interphase can be extended up to 6-fold when the triazole platform acts as curatives and serve as bridges after the epoxy cure. Consequently, the composite’s interfacial shear strength and interlaminar shear strength were increased up to 78 and 72%, respectively. This work affords a reactive platform where a custom-tailored fiber/matrix interface can be designed by virtue of versatility in clickable reactants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.