Abstract

The latency-associated nuclear antigen (LANA) is constitutively expressed in cells infected with the Kaposi's sarcoma (KS) herpesvirus (KSHV), also referred to as human herpesvirus 8. KSHV is tightly associated with body cavity-based lymphomas (BCBLs) in immunocompromised patients infected with human immunodeficiency virus (HIV). LANA, encoded by open reading frame 73 of KSHV, is one of a small subset of proteins expressed during latent infection and was shown to be important in tethering the viral episome to host chromosomes. Additionally, it has been shown that LANA can function as a regulator of transcription. However, its role in the progression of disease is still being elucidated. Since KS is one of the most common AIDS-associated cancers in the United States and BCBLs appear predominantly in AIDS patients, we examined whether LANA is able to regulate the HIV type 1 (HIV-1) long terminal repeat (LTR). Using luciferase-based transient transfection assays, we found that LANA was able to transactivate the HIV-1 LTR in the human B-cell line BJAB, human monocytic cell line U937, and the human embryonic kidney fibroblast cell line 293T. Moreover, we observed that the virus-encoded HIV transactivator protein Tat cooperated with LANA in activation of the LTR in a dose-response fashion with increasing amounts of LANA. Surprisingly, LANA alone was sufficient to transactivate the HIV-1 LTR in BJAB cells. In similar assays using a HIV-1 LTR construct with the core enhancer elements deleted; the activity of LANA was diminished but not abolished, indicating a mechanism which involves the cooperation of the core enhancer elements and downstream elements which include Tat. Furthermore, transient transfection of an infectious clone of HIV with LANA demonstrated effects similar to those seen in the reporter assays based on Western blot analysis of HIV Gag polypeptide p24. Interestingly, we also demonstrated that the carboxy terminus of LANA associates with Tat in cells and in vitro. These experiments suggest a role for LANA in activating the HIV-1 LTR through association with cellular molecules targeting the core enhancer elements and Tat and may have important consequences in increasing the levels of HIV in infected individuals and, hence, the disease state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.