Abstract
Although color-opponent neurons appear to subserve color vision, precisely how these cells encode hue is still not clear. Single-unit, extracellular recordings from the rainbow trout optic tectum were made in order to examine the possible role of action potential timing in coding chromatic stimuli. We found that color-opponent units can exhibit differences in response latency which are a function of wavelength and response sign, with the OFF response exhibiting the shorter response latency. We also found that units often responded with spike bursts characterized by early and late spikes separated by a silent period, with the relative proportion of early and late spikes varying as a function of wavelength. This type of discharge pattern appears to be a result of inhibitory, color-opponent processes. We suggest that complete inhibition of early spikes may be the mechanism underlying the observed latency differences. These findings suggest a role for action potential patterning in coding chromatic stimuli.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.