Abstract

We study two-point correlation functions of a massive free scalar field in de Sitter space using the heat kernel formalism. Focusing on two operators in conjugate static patches we derive a geodesic approximation to the two-point correlator valid for large mass and at late times. This expression involves a sum over two complex conjugate geodesics that correctly reproduces the large-mass, late-time limit of the exact two-point function in the Bunch-Davies vacuum. The exponential decay of the late-time correlator is associated to the timelike part of the complex geodesics. We emphasize that the late-time exponential decay is in tension with the finite maximal entropy of empty de Sitter space, and we briefly discuss how non-perturbative corrections might resolve this paradox.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.