Abstract

AbstractA climate–glacier model was used to reconstruct Late-glacial climate conditions from two case-study glaciers at 18° and 22° S in the arid (sub)tropical western Andes of northern Chile. The model uses (i) the geometry of the Late-glacial maximum glaciation, (ii) modern diurnal and annual cycles, amplitudes and lapse rates of the climate, (iii) empirical–statistical sublimation, melt and accumulation models developed for this area, and (iv) dynamic ice flow through two known cross-sections for steady-state conditions. The model is validated with modern conditions and compares favorably with the glaciological features of today. The mass-balance model calculates the modern equilibrium-line altitude at 18° S as high as 5850 m (field data 5800 m), whereas no glaciers exist in the fully arid southern area at 22° S despite altitudes above 6000 m and continuous permafrost. For Late-glacial times, the model results suggest a substantial increase in tropical summer precipitation (ΔP = +840 (− 50/+ 10) mm a−1 for the northern test area; +1000 (− 10/+ 30) mm a−1 for the southern test area) and a moderate temperature depression (ΔT = −4.4 (− 0.1/+ 0.2) °C at 18° S; −3.2 (±0.1) °C at 22° S). Extratropical frontal winter precipitation (June–September) was <15% of the total annual precipitation. A scenario with higher winter precipitation from the westerlies circulation belt does not yield a numerical solution which matches the observed geometry of the glaciers. Therefore, we conclude that an equatorward displacement of the westerlies must be discarded as a possible explanation for the late Pleistocene glaciation in the Andes of northern Chile.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.