Abstract

The paper reports an experimental investigation on the effect of geometrical design of double jet impingement microchannels on mixing efficiency. Three arrangements of microchannel reactors (MCRs) were designed with 800μm in diameter by 30mm in length in various confluence angles of 45°, 90°, and 135°. Mixing performance of the microchannels was first evaluated via competitive parallel reactions of Villermaux/Dushman. The mixing quality was then described under various total liquid flow rates and initial acid concentration using segregation index (XS). In the second protocol, mixing performance was further investigated via complicated liquid anti-solvent precipitation (LASP) process for nanodrug production. Curcumin was utilized as a model of an insoluble drug in water and particle size and SEM imaging were then employed to characterize the produced nanosuspentions. The whole results show that despite considerable differences in nature of these two processes, the microchannel with confluence angle of 135° works more efficiently in both protocols, due to its higher mixing quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.