Abstract
Sodium antimonate glass ceramics with different concentrations of Au2O3 were synthesized. The prepared samples were characterized by XRD, XPS, SEM and TEM techniques. These studies have revealed that the samples consist of multiple crystalline phases composed of Sb3+, Sb5+, Au3+ ions, and Au0 particles; moreover these studies have indicated growing proportion of Au0 particles and Sb5+crystal phases (Na2Sb2O6) with increase of Au2O3 concentration. IR and Raman spectral studies have pointed out an increasing degree of polymerization of the glass network with increase of Au2O3 content while optical absorption studies indicated surface plasmon resonance effects. Nd: YAG laser (λ = 1320 nm and pulse width 8 ns) was used for inducing third harmonic generation (THG) signal. Later, THG signal intensity of Nd: YAG laser (λ = 1064 nm and pulse width of 20 ns) vs fundamental beam power density was recorded. The results indicated the maximum intensity for the samples containing a low concentration of Au2O3. For inducing piezo-optical effects, Nd: YAG laser (λ = 1064 nm) and its doubled frequency beam λ = 532 nm (with simultaneous mechanical pressure) were used. The cw He-Ne laser of 20 mW (with beam diameter about 0.5 mm) was used as probing beam for measuring the piezo-optical effects in the photo-polarized samples. The variation of the intensity of the THG beam and piezo-optical coefficients were found to be the maximal for the samples mixed with small quantities of Au2O3. The detailed analysis of XRD, SEM, EPR, IR, optical absorption spectral results suggested that concentrations of Na3SbO3 and also Au2O3 crystal phases are maximal in these samples and are responsible for the maximal photoinduced effects, while the increasing presence of Na2Sb2O6 crystal phases and Au0 metallic particles are found to be hindrance for generation of third harmonic beams and also piezo-optical effects. Overall, the obtained results of nonlinear optical (NLO) and piezo-optical studies indicated that Na2O-Sb2O3 glass ceramics containing small traces of Au2O3 are useful for considering them for nonlinear optical triggering devices and piezo-electric devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Materials Science: Materials in Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.