Abstract

This chapter provides a review of laser sources based on a tellurium oxide (TeO2) glass hosts reported to date, whether in the form of bulk glass, fibre or microspheres. The majority of laser sources reported using tellurite glass as host material are based on rare-earth ion (Nd3+, Er3+, Tm3+ and Ho3+) dopants; however, there are also reports on supercontinuum generation and Raman lasing in highly nonlinear tellurite glass fibres. All of the tellurite glass-based lasers discussed in this chapter operate in the infrared spectral region with laser wavelengths around 1 μm, 1.5 μm, 1.9 μm and 2.1 μm for Nd3+, Er3+, Tm3+ and Ho3+ doping, respectively, while supercontinuum and Raman laser sources emit in the ranges 0.8–4.9 μm and 1.5–2.65 μm, respectively. The maximum optical output power reported to date from a tellurite glass laser is 1.12 W using cladding pumped fibre. Lasers operating in continuous wave, Q-switched and mode-locked regimes have also been demonstrated using rare-earth-doped tellurite glass hosts. The future prospects for lasers based on tellurite glasses are also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.