Abstract

Laser-heated capillary discharge waveguides are novel, low plasma density guiding structures able to guide intense laser pulses over many diffraction lengths and have recently enabled the acceleration of electrons to 7.8 GeV by using a laser-plasma accelerator (LPA). These devices represent an improvement over conventional capillary discharge waveguides, as the channel matched spot size and plasma density can be tuned independently of the capillary radius. This has allowed the guiding of petawatt-scale pulses focused to small spot sizes within large diameter capillaries, preventing laser damage of the capillary structure. High performance channel-guided LPAs require control of matched spot size and density, which experiments and simulations reported here show can be tuned over a wide range via initial discharge and laser parameters. In this paper, measurements of the matched spot size and plasma density in laser-heated capillary discharges are presented, which are found to be in excellent agreement with simulations performed using the MHD code MARPLE. Strategies for optimizing accelerator performance are identified based on these results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.