Abstract

Due to the notable disparities in the physical and chemical characteristics between titanium and steel, the direct fusion of titanium/steel bimetallic sheets results in a considerable formation of fragile intermetallic compounds, making it difficult to achieve excellent metallurgical welded joints. In this study, a multi-principal powder of CoCrNiMn was designed and utilized as a filler material in the welding of the TA1/Q345 bimetallic sheet. It was expected that the in situ formation of Fex(CoCrNiMn)Tiy high-entropy alloys would be achieved using the filler powders, combined with the Ti and Fe elements from the melting of the TA1 and Q345 so as to restrain the generation of Fe-Ti IMCs and obtain the promising welded joints of the TA1/Q345 bimetallic sheet. An interesting finding is that high-entropy alloys were successfully obtained in the weld metal. The Fe-Ti intermetallic compounds at the welding interface were significantly reduced. The tensile strength was ~293 MPa, accounting for 60% of the strength of the base metal. Dimples were observed at the fracture of the welded joint.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.