Abstract

A cavity-stabilized 578 nm laser is used to probe the clock transition of ytterbium atoms trapped in optical lattice sites. We obtain a Fourier-limited 4.2-Hz-linewidth Rabi spectrum and a Ramsey spectrum with fringe linewidth of 3.3 Hz. Based on one of the spectra, the 578 nm laser light is frequency-stabilized to the center of the transition to achieve a closed-loop operation of an optical clock. Based on interleaved measurement, the frequency instability of a single optical clock is demonstrated to be 5.4 × 10-16/√τ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.