Abstract

A laser pulse transient method for measuring normal spectral emissivity is described. In this method, a laser pulse (λ=1064 nm) irradiates the top surface of a flat specimen. A two-dimensional temperature response of the bottom surface is measured with a calibrated thermographic camera. By solving an axisymmetric boundary value heat conduction problem, the normal spectral emissivity at 1064 nm is determined by using an iterative nonlinear least-squares estimation procedure. The method can be applied to arbitrary sample surface quality. The method is tested on a nickel specimen and used to determine the normal spectral emissivity of AISI 304 stainless steel. The expanded combined uncertainty of the method has been estimated to be 18%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.