Abstract

Laser gas-assisted material processing finds wide application in industry. The modelling of heating, elastic response of the substrate material, and the wave analysis gives insight into the laser workpiece interaction. In the present study, laser gas-assisted heating of steel is considered. The normal component of the thermal stress is taken as the source of load for the flexural wave generation in the material. The flexural wave generated is simulated and the wave characteristics are analyzed at four locations at the workpiece surface. The numerical scheme employing a control volume approach is introduced when solving the governing equations of flow and heat transfer while finite element and spectran element methods are used when solving the stress and wave equations. It is found that the normal component of the stress is tensile. The dispersion effect of the workpiece material, interference of the reflected beam, and partial overlapping of second mode of the travelling wave enable to identify a unique pattern in the travelling wave in the substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.