Abstract

Copper oxide compounds (CuxO) with bandgaps of 1.3–2.1 eV (CuO) and 2.1–2.6 eV (Cu2O) have been investigated as promising p-type semiconducting materials. CuxO is generally obtained by deposition or thermal oxidation, but those methods are not optimal for flexible substrates. Furthermore, additional patterning steps are required to fabricate devices.We present an easy, controllable method to fabricate a metal-semiconductor-metal (MSM) photodetector using laser-induced oxidation of a thin Cu film. After laser irradiation, the Cu film is heated under ambient conditions, and this leads to a thermal oxidation reaction, in which Cu oxide is monolithically formed in the Cu film and a Cu-CuxO-Cu MSM structure is produced. Since the laser offers localized heating, an arbitrary CuxO pattern can be written in the Cu film by spatially controlled heating. In addition, by optimizing the heating time, the laser-induced oxidation can be successfully performed even on a flexible substrate. To study the laser-induced oxidation, we examined the correlation between laser parameters and the oxidation pattern and analyzed the composition using scanning electron microscopy, Raman spectroscopy, and X-ray photoemission spectroscopy. Furthermore, we measured the transient photoresponse and employed scanning photocurrent microscopy to investigate the mechanism of carrier transport behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.