Abstract

Laser excitation of nanometer-sized atomic and molecular clusters offers various opportunities to explore and control ultrafast many-particle dynamics. Whereas weak laser fields allow the analysis of photoionization, excited-state relaxation, and structural modifications on these finite quantum systems, large-amplitude collective electron motion and Coulomb explosion can be induced with intense laser pulses. This review provides an overview of key phenomena arising from laser-cluster interactions with focus on nonlinear optical excitations and discusses the underlying processes according to the current understanding. A brief general survey covers basic cluster properties and excitation mechanisms relevant for laser-driven cluster dynamics. Then, after an excursion in theoretical and experimental methods, results for single- and multiphoton excitations are reviewed with emphasis on signatures from time- and angular resolved photoemission. A key issue of this review is the broad spectrum of phenomena arising from clusters exposed to strong fields, where the interaction with the laser pulse creates short-lived and dense nanoplasmas. The implications for technical developments include the controlled generation of ion, electron, and radiation pulses, as will be addressed along with corresponding examples. Finally, future prospects of laser-cluster research as well as experimental and theoretical challenges are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.