Abstract

We present a master equation that describes the dynamics of laser cooling of a trapped ion. It is valid in the Lamb–Dicke limit and rests on an adiabatic elimination combined with a degenerate perturbation treatment. It describes relaxation of probabilities and coherences in the harmonic-trap degrees of freedom. The eigenvalue spectrum the of the time-evolution operator is derived, and it follows that only one zero eigenvalue exists, giving the unique steady-state probability distribution. The coherences all decay to zero with time. The ultimate steady state is distribution, which can be characterized by a temperature. We also report a numerical calculation that a Planck supports our analytical work. The final energy of the cooling is given and discussed. Finally there is a comparison between the present results and our earlier, approximate, treatments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.