Abstract
Small-sized vertical-cavity surface-emitting laser (VCSEL) offer the possibility of very low power consumption along with high reliability for cryogenic data transfer. Cryogenic data transfer has applications in focal plane array cameras operating at 77 K, and at the lower temperature of 4 K for data extraction from superconducting circuits. A theoretical analysis is presented for 77 K and 4 K operation based on small cavity, oxide-free VCSEL sizes of 2 to $6~\mu \text{m}$ , that have been shown to operate efficiently at room temperature. Temperature dependent operation for optimally-designed VCSELs are studied by calculating the response of the laser at 77 K and 4 K to estimate their bias conditions needed to reach modulation speed for cryogenic optical links. The temperature influence is to decrease threshold for reducing temperature, and to increase differential gain for reducing temperature. The two effects predict very low bias currents for small cavity VCSELs to reach needed data speed for cryogenic optical data links. Changing the number of top-mirror pairs has also been studied to determine how cavity design impacts speed and bit energy. Our design and performance predictions paves the way for realizing highly efficient, ultra-small VCSEL arrays with applications in optical interconnects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.