Abstract

The surface properties of Ti-6Al-4Valloy, such as wear resistance, are inadequate for many applications. To improve the surface properties of the alloy, many techniques have been considered. One of the promising techniques is to form a nitride layer on the surface of the workpiece by a laser beam. In the present study, laser assisted nitriding of the Ti-6Al-4V alloy surface is carried out under a nitrogen gas flow environment. A CO 2 laser is used to irradiate the Ti-6Al-4Valloy surface while nitrogen is introduced co-axially with the laser beam onto the workpiece surface. The resulting surface cross section is examined metallurgically. SEM and XRD were carried out for material characterization. The study is extended to include the electrochemical response of the resulting surfaces. The surface morphology of the electrochemically treated workpieces are examined. It is found that in the laser treated region dendritic structures occur and TiN forms in the surface vicinity. The density of pit formation at the surface of the treated region reduces considerably.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.