Abstract

A new method for the detection of trace elements in polar ice cores using laser ablation with subsequent inductively coupled plasma mass spectrometry analysis is described. To enable direct analysis of frozen ice samples a special laser ablation chamber was constructed. Direct analysis reduces the risk of contamination. The defined removal of material from the ice surface by means of a laser beam leads to higher spatial resolution (300-1000 microm) in comparison to investigations with molten ice samples. This is helpful for the detection of element signatures in annual layers of ice cores. The method was applied to the successful determination of traces for the elements Mg, Al, Fe, Zn, Cd, Pb, some rare-earth elements (REE) and minor constituents such as Ca and Na in ice cores. These selected elements serve as tracer elements for certain sources and their element signatures detected in polar ice cores can give hints to climate changes in the past. We report results from measurements of frozen ice samples, the achievable signal intensities, standard deviations and calibration graphs as well as the first signal progression of 205Pb in an 8,000-year-old ice core sample from Greenland. In addition, the first picture of a crater on an ice surface burnt by an IR laser made by cryogenic scanning electron microscopy is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.