Abstract

While Answer-Set Programming (ASP) is a prominent approach to declarative problem solving, optimisation problems can still be a challenge for it. Large-Neighbourhood Search (LNS) is a metaheuristic for optimisation where parts of a solution are alternately destroyed and reconstructed that has high but untapped potential for ASP solving. We present a framework for LNS optimisation in answer-set solving, in which neighbourhoods can be specified either declaratively as part of the ASP encoding, or automatically generated by code. To effectively explore different neighbourhoods, we focus on multi-shot solving as it allows to avoid program regrounding. We illustrate the framework on different optimisation problems, some of which are notoriously difficult, including shift planning and a parallel machine scheduling problem from semi-conductor production which demonstrate the effectiveness of the LNS approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.