Abstract
Spin-to-charge conversion at the interface between magnetic materials and transition metal dichalcogenides has drawn great interest in the research efforts to develop fast and ultralow power consumption devices for spintronic applications. Here, we report room temperature observations of spin-to-charge conversion arising from the interface of Ni80Fe20 (Py) and molybdenum disulfide (MoS2). This phenomenon can be characterized by the inverse Edelstein effect length (λIEE), which is enhanced with decreasing MoS2 thicknesses, demonstrating the dominant role of spin-orbital coupling (SOC) in MoS2. The spin-to-charge conversion can be significantly improved by inserting a Cu interlayer between Py and MoS2, suggesting that the Cu interlayer can prevent magnetic proximity effect from the Py layer and protect the SOC on the MoS2 surface from exchange interactions with Py. Furthermore, the Cu-MoS2 interface can enhance the spin current and improve electronic transport. Our results suggest that tailoring the interface of magnetic heterostructures provides an alternative strategy for the development of spintronic devices to achieve higher spin-to-charge conversion efficiencies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.