Abstract

In this paper, we study the large time behavior of solutions of a class of parabolic fully nonlinear integro-differential equations in a periodic setting. In order to do so, we first solve the ergodic problem}(or cell problem), i.e. we construct solutions of the form $\lambda t + v(x)$. We then prove that solutions of the Cauchy problem look like those specific solutions as time goes to infinity. We face two key difficulties to carry out this classical program: (i) the fact that we handle the case of "mixed operators" for which the required ellipticity comes from a combination of the properties of the local and nonlocal terms and (ii) the treatment of the superlinear case (in the gradient variable). Lipschitz estimates previously proved by the authors (2012) and Strong Maximum principles proved by the third author (2012) play a crucial role in the analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.