Abstract

Electric motor drives and power electronic converters have become increasingly common in advanced power systems. Passive LC filters are used in these systems to reduce the power ripples. These filters are usually poorly damped for reducing the losses as well as the size/weight and the cost of the system. This leads to instability phenomena if the load power exceeds a power limit depending on the filter parameters. The purpose of this paper is to present tools allowing large signal stability analysis of a dc power system. These tools allow estimation of the domain of attraction of the system operating point. It will be shown that this large signal stability analysis gives useful hints on the design of the system to optimize the stability criteria for constant and variable power loads. The impact of the load dynamics on stability is also studied. An electric drive connected to a dc power supply through a poorly damped LC filter is used as a case study. The simulations and the experimentations confirm the analytical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.