Abstract

Stable second-order nonlinearity (SON) was created in Pyrex borosilicate glass by the temperature/electric field thermal poling method. The distribution and amplitude of the induced nonlinearity were characterized with second harmonic microscopy. It was found that the SON was located in a narrow layer around 1.9 &mu;m under the anode surface. An effective <i>d<sub>33</sub></i> as high as 0.24 pm/V was obtained; a value comparable to that obtained in fused silica samples. The migration of different mobile alkali ions during the poling process was characterized with energy dispersive x-ray spectrometry in conjunction with scanning electron microscopy (SEM). It was found that Na was depleted from a region about 3.3 &mu;m beneath the anode surface, while K was first depleted from the immediate region under the anode, and then accumulated in the Na-depleted region with its peak at ~1.8 &mu;m beneath the anode. SEM observation of the cross-section of the poled glass region, after it had been etched in diluted hydrofluoric acid for several minutes, revealed an etched trench, ~1.8 &mu;m under the anode edge and ~0.3 &mu;m in width; while in post-annealed samples, no such etched trench could be observed. A frozen-in space-charge field due to charge migration is believed to be responsible for the creation of the SON and the altered etching rate in the poled region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.