Abstract

Triton's seasons differ materially from those of Pluto owing to four important differences in the governing physics: First, the obliquity of Triton is significantly less than Pluto's obliquity. Second, Triton's inclined orbit precesses rapidly about Neptune so that a complicated seasonal variation in the latitude of the Sun occurs for Triton. Third, Neptune's orbit is much more circular than Pluto's orbit so that the sunlight intercepted by Triton's disk does not vary seasonally. Finally, Triton's atmosphere cannot be saturated at the lower latitudes so that the mass of the atmosphere is controlled by the temperature of the high-latitude ices or liquids (polar caps), as for CO 2 on Mars. The consequences of Triton's entire surface being covered with volatile substances have been examined. It is found that the circularity of Neptune's orbit then implies that Triton would have hardly any seasonal variation at all in surface temperature or atmospheric bulk, in spite of the complicated precessional effects of Triton's orbit. The only seasonal effect would be the migration of surface ices and liquids. This scenario is ruled out because it implies a column CH 4 abundance much higher than that observed and because it quickly depletes the lower latitudes of volatiles. It is concluded that Triton's most volatile surface substances are probably relegated to latitudes higher than 35° and probably form polar caps. The temperature of the polar caps should be nearly equal, even during midwinter/midsummer when the insolation of the summer pole is greatest. If the summer pole completely sublimates during one of the “major” summers, Triton's atmosphere may begin to freeze out over the winter caps. It is therefore expected that Triton's atmosphere undergoes large and complex seasonal variations. Triton is currently approaching a “maximum southern summer”, and over the remainder of this century, a dramatic increase in CH 4 abundance above the current upper limit of 1 m-Am may be witnessed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.