Abstract

A good surface-enhanced Raman spectroscopy (SERS) substrate requires precise control of the enhancement factor in large area which may be achieved with large-scale hot spot engineering. Here, we present a facile method for synthesizing 2-D hexagonally patterned gold nanoparticle arrays on centimeter-sized substrates of mesoporous silica thin films with vertical nanochannels by chemical reduction. Scanning electron microscopy images showed densely packed gold nanoparticles directly anchored on the openings of vertical mesopores (∼5 nm) leading to 2 nm nanogaps between the gold nanoparticles. The gold nanoparticle arrays showed red-shifted localized surface plasmon resonance spectra due to strong couplings between close-packed gold. The dense on-substrate 2 nm plasmonic nanogaps lead to highly enhanced local electric field and excellent macroscopic uniformity in SERS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.