Abstract

Controlled synthesis of 2D structures on nonmetallic substrate is challenging, yet an attractive approach for the integration of 2D systems into current semiconductor technologies. Herein, the direct synthesis of high-quality 2D antimony, or antimonene, on dielectric copper oxide substrate by molecular beam epitaxy is reported. Delicate scanning tunneling microscopy imaging on the evolution intermediates reveals a segregation growth process on Cu3 O2 /Cu(111), from ordered dimer chains to packed dot arrays, and finally to monolayer antimonene. First-principles calculations demonstrate the strain-modulated band structures in antimonene, which interacts weakly with the oxide surface so that its semiconducting nature is preserved, in perfect agreement with spectroscopic measurements. This work paves the way for large-scale growth and processing of antimonene for practical implementation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.