Abstract

Access to pure and soluble recombinant proteins is essential for numerous applications in proteome research, such as the production of antibodies, structural characterization of proteins, and protein microarrays. Through the German cDNA Consortium we have access to more than 1500 ORFs encoding uncharacterized proteins. Preparing a large number of recombinant proteins calls for the careful refinement and re-evaluation of protein purification tools. The expression and purification strategy should result in mg quantities of protein that can be employed in microarray-based assays. In addition, the experimental set-up should be robust enough to allow both automated protein expression screening and the production of the proteins on a mg scale. These requirements are best fulfilled by a bacterial expression system such as Escherichia coli. To develop an efficient expression strategy, 75 different ORFs were transferred into suitable expression vectors using the Gateway cloning system. Four different fusion tags (E. coli transcription-termination anti-termination factor (NusA), hexahistidine tag (6xHis), maltose binding protein (MBP) and GST) were analyzed for their effect on yield of induced fusion protein and its solubility, as determined at two different induction temperatures. Affinity-purified fusion proteins were confirmed by MALDI-TOF MS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.