Abstract
Large-scale, high yield production of tungsten trioxide (WO3) particles was successfully realized by using a facile, high-temperature, catalyst-free, solid evaporation route with ammonium paratungstate tetrahydrate as raw material. The crystalline structure, size, and morphology of the as-synthesized WO3 particles were systematically investigated by combined techniques of X-ray diffraction and electron microscopy, as a function of reaction temperature, deposition temperature, carrier gas flow rate, and size of the quartz tube. With low carrier gas flow rate (1–2 L min−1), the WO3 products collected from different deposition regions were found to exhibit a diversity of forms, such as thick rods, irregular, polyhedral, and octahedral particles, depending on the reaction temperature. At a reaction temperature of 1350 °C, increasing the carrier gas flow rate led to the formation of semi-spherical or quasi-spherical WO3 particles with decreased size and improved size distribution. A reaction temperature of 1350 °C and an Ar flow rate of 6 L min−1 yielded optimized quasi-spherical WO3 nanoparticles with high size uniformity, which have been found to exhibit stable electrochromic performance with high colour contrast and H+ insertion ability. The WO3 nanoparticles that can be effectively produced in high quantity are promising electrochromic candidates for potential applications in large-area smart windows.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.