Abstract
The characteristics of the glucose oxidase were studied using a combination of experimental and theoretical techniques. Quasi elastic neutron scattering experiments were used to obtain the vibrational frequencies of the protein. These were compared to theoretical results obtained by normal mode analysis. Results indicate a good match between the experimental and theoretical values. Molecular dynamic simulation with covariant analysis was used to study the structure and dynamics of glucose oxidase. Various parameters like the radius of gyration, root mean square fluctuations, solvent accessibility were studied for evaluating the structural stability of the protein. The frequency of vibration calculated from the three methods is used to derive the large scale motions. Theses studies were used to predict the suitable lysine residues for linkage with carbon nanotubes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.