Abstract

AbstractThe three-dimensional ice-sheet model SICOPOLIS is used to simulate the dynamic/thermody namic behaviour of the entire Greenland ice sheet from 250 000 a BP until today. External forcing consists of a surface-temperature history constructed from δ18O data of the GRIP core, a snowfall history coupled linearly to that of the surface temperature, a piecewise linear sea-level scenario and a constant geothermal heat flux. The simulated Greenland ice sheet is investigated in the vicinity of Summit, the position where the maximum elevation is taken, and where the two drill sites GRIP and GISP2 are situated 28km apart from each other. In this region, the agreement between modelled and observed topography and ice temperature turns out to be very good. Computed age-depth profiles for GRIP and GISP2 are presented, which can he used to complete the dating of these cores in the deeper regions where annual-layer counting is not possible. However, artificial diffusion influences the computed ages in a near-basal boundary layer of approximately 15% of the ice thickness, so that the age at the bottom of the cores cannot be predicted yet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.