Abstract

AbstractThe precipitation of magnesium oxide (MgO) from the Earth's core has been proposed as a potential energy source to power the geodynamo prior to the inner core solidification. Yet, the stable phase and exact amount of MgO exsolution remain elusive. Here we utilize an iterative learning scheme to develop a unified deep learning interatomic potential for the Mg‐Fe‐O system valid over a wide pressure‐temperature range. This potential enables direct, large‐scale simulations of MgO exsolution processes at the Earth's core‐mantle boundary. Our results suggest that Mg exsolve in the form of crystalline Fe‐poor ferropericlase as opposed to a liquid MgO component presumed previously. The solubility of Mg in the core is limited, and the present‐day core is nearly Mg‐free. The resulting exsolution rate is small yet nonnegligible, suggesting that MgO exsolution may provide a potentially important energy source, although it alone may be difficult to drive an early geodynamo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.